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Abstract

We estimate a no-arbitrage term structure model of U.S. Treasury yields and corporate

bond spreads with both economic factors and latent factors as drivers of term structure

dynamics. We consider two sets of economic factors: macro factors consisting of inflation

and real activity, and financial market factors consisting of funding liquidity and market

volatility. We show that financial market factors have limited effects on the Treasury

yield curve but substantial impacts on the credit spread term structure. In particular,

negative liquidity shocks widen credit spreads, and this effect is more pronounced for

short-term corporate bonds. We also find that out-of-sample forecasts for credit spreads

improve when financial market factors are incorporated and when no-arbitrage restrictions

are imposed. We also propose a minimum-chi-square method for estimating the term

structure models of interest rate and credit spreads, which is more efficient and accurate

than the widespread maximum-likelihood estimation.
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1 Introduction

In this study, we propose a novel framework to identify what drives the relationship between

the dynamics of economic factors, including macroeconomic factors and financial market fac-

tors, and the term structure of interest rates and credit spreads. Numerous empirical stud-

ies show that credit spreads depend crucially on the state of the macroeconomy and the

state of the financial market. A partial list of studies along this line of research includes

Carey (1998), Collin-Dufresne, Goldstein, and Martin (2001), Elton, Gruber, Agrawal, and

Mann (2001), Altman, Brady, Resti, and Sironi (2005), Longstaff, Mithal, and Neis (2005),

Giesecke, Longstaff, Schaefer, and Strebulaev (2011), Lin, Wang, and Wu (2011), Acharya,

Amihud, and Bharath (2010), and Giesecke, Longstaff, Schaefer, and Strebulaev (2011).

Though rich in economic intuitions, the results of these studies depend on the specific choices

of the explanatory variables and the characteristics of credit spreads, such as maturity and

credit-rating. Previous literature has mainly focused on explaining changes in credit spreads

using regression analysis.

This paper, by contrast, investigates credit spreads in a multi-factor (macro factors and

financial market factors) term structure model subject to restrictions imposed by no-arbitrage

assumptions. Using a no-arbitrage framework not only facilitates the interpretation of the

estimation results, but it also provides insights into how yields of maturities not included in

the regressions move. In our setup, defaultable corporate bonds are valued as if they were risk-

free by replacing the short rate with a default adjusted rate, where the default-adjusted rate for

a certain credit-rating class is an affine function of the underlying factors (Duffie and Singleton

(1999) and Duffie, Pedersen, and Singleton (2003)). One innovation of our framework is that

the underlying factors are comprised of both observable economic variables—macroeconomic

variables and financial market variables—and unobserved latent factors. This paper seeks to

extend previous studies by drawing additional insights from the inclusion of macroeconomic

variables, which consist of inflation and real activity and financial market variables, such as

funding liquidity and market volatility.
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Our main results are as follows. Macroeconomic factors display large explanatory power

for Treasury yields. Positive shocks to both inflation and real activity increase Treasury yields,

and these effects are stronger for short-term Treasury bonds. In addition, macroeconomic fac-

tors are also important determinants of credit spreads. Declines in inflation and real activity

lead to higher credit spreads. In contrast, financial market factors have limited effects on

the Treasury yield curve but substantial impacts on the credit spread term structure. Positive

volatility shocks increase the BBB credit spreads, and this effect is stronger at the long end of

the credit spreads curve. Their impacts on the A credit spreads are different over the whole

credit spreads term structure, as they are negative at the short end but become positive in the

middle. More importantly, liquidity factor has the strongest effects on the short-term credit

spreads among the four economic factors. Funding liquidity shrinkage remarkably widens

credit spreads, providing an explanation for the run-up in credit spreads in the recent global

financial crisis. The impulse response functions show that the effects of macroeconomic fac-

tors on both Treasury yields and credit spreads are generally more persistent than the effects

of financial market factors. Moreover, to investigate the role of financial market factors and

no-arbitrage assumptions in forecasting credit spreads, we perform a comparison of out-of-

sample forecasts for credit spreads. It turns out that adding financial market factors substan-

tially improves forecasts for credit spreads. This improvement in forecasting performance is

more noticeable for short-term credit spreads. Imposing no-arbitrage restrictions further helps

in out-of-sample forecasts.

This work builds on recent studies of affine term structure models of default-free bonds

with macroeconomic variables. In a seminal work, Ang and Piazzesi (2003) have introduced

two macro factors, inflation and economic growth, as priced risk factors in a Gaussian affine

term structure model of U.S. Treasury yields by using a factor representation of the pricing ker-

nel. Inspired by their work, a rich literature has emerged that explores the importance of incor-

porating macro factors into no-arbitrage term structure models (see, for example, Gallmeyer,

Hollifield, and Zin (2005), Diebold, Rudebusch, and Boragan Aruoba (2006), Hördahl, Tris-

tani, and Vestin (2006), Wachter (2006), Bekaert, Cho, and Moreno (2010), Bikbov and Cher-
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nov (2010)). However, little has been done to expand this literature beyond the pricing of

Treasury bonds. As a natural extension to Ang and Piazzesi (2003), this paper incorporates

corporate bonds into analysis and aims at pricing both default-free Treasury bonds and default-

able corporate bonds in a uniformed no-arbitrage framework with macroeconomic variables

and financial market variables as drivers of term structure dynamics.

A large strand of literature uses either reduced-form or structural models to describe the

term structure of interest rates and credit spreads. Prominent examples include Longstaff,

Mithal, and Neis (2005), Longstaff and Schwartz (1995), Duffee (1999), Collin-Dufresne,

Goldstein, and Martin (2001), Eom, Helwege, and Huang (2004), Driessen (2005), Collin-

Dufresne, Goldstein, and Helwege (2010) and Joslin, Singleton, and Zhu (2011). However,

most of these studies are solely based on latent factors, which are directly derived from the

yield curve and credit spread term structure. The economic meanings of these latent factors

are unclear. Some studies consider observable variables, but the number of these observable

variables is small due to tractability reasons. In contrast, we use two macro factors, inflation

and real activity, and two financial market factors, funding liquidity and market volatility, to

summarize the information and suppress the noises in many observable macroeconomic and

financial times series.

There is a growing literature that jointly estimates the term structure of Treasury yields

and corporate yields in linear affine models with macroeconomic variables, including Luisi

and Amato (2006), Mueller (2008), and Wu and Zhang (2008). Luisi and Amato (2006)

estimate a version that combines macroeconomic variables and latent factors. By using a

macro-finance term structure model, Mueller (2008) tries to capture the joint dynamics of

GDP, inflation, Treasury yields, and credit spreads. Another important paper in this research

area is Wu and Zhang (2008), who links the dynamics and market pricing of three risk di-

mensions (inflation, real output growth, and financial market volatility) to the term struc-

ture of U.S. Treasury yields and corporate bond credit spreads. Instead of identifying three

risk dimensions, we go one step further in identifying and estimating risk dimensions using

macroeconomic factors, financial market factors, and the traditional latent factors in a novel
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Gaussian affine term structure framework. This approach uses linear regression to reduce the

dimension of the numerical optimization problem, and it improves the numerical behavior

of estimation by eliminating parameters from the objective function that cause problems for

conventional maximum-likelihood estimation (MLE) and quasi-maximum likelihood estimate

(QMLE) methods.

Gaussian affine term structure models (ATSM) have become fundamental tools for em-

pirical research in macroeconomics and finance. However, tremendous numerical challenges

emerge in estimating linear affine models using conventional MLE due to highly non-linear

and badly behaved likelihood surfaces. Ang and Piazzesi (2003) find difficulties in estimat-

ing models with many factors by using the MLE and try to achieve the global maximum by

using multiple starting values. Their results were recently criticized by Hamilton and Wu

(2012), who show that Ang and Piazzesi’s parameter estimates in fact correspond to a local

maximum of the likelihood surface. Mueller (2008) evaluates the likelihood for two billion

sets of starting values and then optimizes them by using the best twenty thousand points as

starting values. The number of the starting points itself demonstrates that the methodology

used in this framework is not reliable. Luisi and Amato (2006) estimate the parameters using

the MLE, a method similar to that used by Ang and Piazzesi (2003). Thus, previous studies

estimating affine term structure models of Treasury yields and corporate yields suffer the same

problem as Ang and Piazzesi (2003). Following Hamilton and Wu (2012, 2014), we develop a

minimum-chi-square estimation (MCSE) method for estimating the term structure models of

interest rate and credit spreads, which turns out to be much more efficient and accurate than

the MLE.

The effects of aggregate liquidity or liquidity risk on asset pricing have been recently high-

lighted in the literature. Brunnermeier and Pedersen (2009) provide a model that elaborates

on the relationship between funding liquidity and market liquidity (FL-ML) and show that

the two notions are mutually reinforcing, leading to liquidity spirals. Garleanu and Pedersen

(2011) show that a funding liquidity crisis gives rise to a price gap between securities with

identical cash flows but different margins. Dick-Nielsen, Gyntelberg, and Lund (2013) find
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that the ease of obtaining term funding in the money markets determines the liquidity in the

bond market. The relationship between illiquidity shocks and returns of corporate bonds have

been documented by De Jong and Driessen (2012), Acharya, Amihud, and Bharath (2010),

and Lin, Wang, and Wu (2011). Acharya, Amihud, and Bharath (2010) show that the im-

pact of liquidity shocks on asset prices is conditional and is significantly stronger in adverse

economic times. Lin, Wang, and Wu (2011) establish that liquidity risk is a key determinant

of corporate bond returns. Given the evidence that funding liquidity is positively correlated

with corporate bond market liquidity, we adopt it in our framework and study its effects on

corporate bond pricing in a no-arbitrage framework.

The rest of the paper is organized as follows. Section 2 describes the data. Section 3

specifies the no-arbitrage term structure model. Section 4 discusses the estimation and iden-

tification strategy. Section 5 presents the estimation results both with and without arbitrage

restrictions and discusses the implied impulse responses and forecasting results. Section 6

concludes.

2 Data

This section provides a detailed description of the data used in this study. Treasury yields

and corporate bond yields are the observable data. The starting point of the sample period is

determined by the first month in which the corporate bond yields are available.

2.1 Economic Variables

We consider four groups of economic variables: inflation-related series, real activity-related

series, volatility-related series, and liquidity-related series. In the group of inflation-related

series, we have five inflation measures: the consumer price index (CPI), the core CPI, the per-

sonal consumption expenditure (PCE) deflator, the core PCE deflator, and the producer price

index (PPI). The CPI measures the average changes in the price level of a basket of goods
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and services bought by a typical household. The PCE deflator measures the average changes

in the price level of a basket of goods and services bought by a typical consumer. The core

measures of CPI and PCE exclude food and energy, because their prices are highly volatile.

The PPI measures average changes in prices received by domestic producers for their output.

The second group consists of three output and employment series. UE (Unemployment Rate)

measures the percentage of people who are without work and are actively seeking work com-

pared to all individuals in the labor force. GEMP (Growth Rate of Employment) measures the

growth rate of the percentage of remaining employed people in the labor force. GIP (Growth

Rate of Industrial Production) measures the growth rate of the production of goods. Overall,

the first two groups of variables are used to characterize the economy as a whole and are called

"macro variables."

In addition to macro variables, we also consider the economic variables that measure the

dynamics of the financial market, which are called "financial market variables". On the one

hand, to capture the liquidity level of the financial market, we adopt the TED spread as a proxy

for the level of funding liquidity, which is defined as the difference between the 3-month LI-

BOR and the 3-month U.S. Treasury bill rate.1 This measure has been suggested by Hameed,

Kang, and Viswanathan (2010), Boyson, Stahel, and Stulz (2010), and Brunnermeier and Ped-

ersen (2009). Other liquidity measures are 6MTED (6-month LIBOR minus T-bill spread)

and 3MCPMFFR (3-month commercial paper minus federal funds rate). Following Wu and

Zhang (2008), we incorporate the dynamics of the financial market volatility. Specifically, we

use two volatility indexes from option market: the VIX index and the VXO index measure the

one-month at-the-money Black and Scholes (1973) implied volatility on the S&P 500 index

and the S&P 100 index, respectively. They take the yearly moving average of the daily volatil-

ity series and use the last day of each month to obtain their monthly data. Both series are

available daily from the Chicago Board of Options Exchange, but the VIX series starts on a

later date in January 1990. We augment the VIX data with the estimated data from December

1988 to December 1989.
1An alternative proxy for funding liquidity in this paper is the LIBOR-OIS spread. The results based on this

alternative spread are quantitatively similar and are available upon request.
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Following Ang and Piazzesi (2003) and Wu and Zhang (2008), to reduce the dimensional-

ity of the system, we first normalize each series separately to have zero mean and unit variance

and then extract the first principal component of each group of series separately. This leaves us

with four economic variables, which are referred to as "inflation," "real activity," "volatility,"

and "liquidity." In what follows, we use the inflation and real activity factors to capture the

information about the macroeconomic economy and volatility and liquidity factors to capture

the information about the financial market.

Figure 1 plots the inflation and real activity factors. The inflation factor peaks in early

1991, which corresponds to the inflation pressure generated by oil shocks during the first Gulf

War. In the subsequent period, the inflation factor shows a downward trend and stays low.

As expected, most of the movement in the real activity factor is displayed at business cycle

frequencies. For example, the real activity factor steadily grows in the period before 2008, but

slumps at the onset of the recent global financial crisis. Figure 2 plots the financial market

liquidity and volatility factors. The volatility factor has a couple of spikes over the sample

period in response to financial market turbulence, such as the Asian crisis in 1997, the dot-

com bubble burst in 2001, and the subprime mortgage crisis in 2008. Similarly, the liquidity

factor fluctuates considerably over the sample period. Its troughs coincide with the spikes of

the volatility factor, which together characterize major financial crises in the sample period.

Table 1 shows the summary statistics of the four groups of economic factors that we consider.

An important stylized fact is that all series are highly autocorrelated. This is consistent with

the slow mean reversion observed in Figure 1 and Figure 2.

2.2 Government Bonds

The Treasury yields data are monthly continuously compounded spot rates at maturities 1 and

3 months and 2, 5, and 10 years from December 1988 to May 2013. The starting point of

the sample period is determined by the availability of the corporate yields data, which will be

discussed below. The sources of the data are twofold. The long maturity rates of 2, 5, and
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10 years are from the dataset provided by Guerkaynak, Sack, and Wright,2 while the short

maturity rates of 1 and 3 months are from the Fama CRSP Treasury Bill files. The reason that

we use the latter data is that the shortest yield maturity in the Guerkaynak, Sack, and Wright’s

dataset is one year and they advise against using their estimated yield curve parameters to

calculate arbitrary maturity rates.

Figure 3 plots the time series of the Treasury yields at three maturities: 2, 5, and 10 years.

The three long-term rates exhibit a downward trend over the sample period, largely matching

the downward trend of the inflation factor observed in Figure 1. There are three periods of low

short-term interest rates and high-term spreads around 1993, 2003, and 2008, each of which

corresponds to a trough of the real activity factor in Figure 1. These comparisons suggest that

the movement in the Treasury yields is related to macro factors.

2.3 Corporate Bonds

Following Wu and Zhang (2008), we construct continuously compounded spot rates for cor-

porate bonds in the A and BBB rating classes, using month-end prices on corporate bonds that

are either in the Merrill Lynch U.S. High Yield Index or the Merrill Lynch U.S. Corporate

Master Index. The Merrill Lynch data covers the period from January 1997 to May 2013. To

construct a longer sample, we augment the Merrill Lynch data by the Lehman Brothers Fixed

Income database from December 1988 to December 1996. Therefore, we estimate our model

based on data from December 1989 to May 2013.

To construct the spot rates, we estimate the Nelson and Siegel (1987) model on month-end

prices of corporate bonds. The estimation chooses senior unsecured bonds with price quotes,

with a fixed coupon schedule, and with maturities between 1 and 35 years, but without option

features. Then, we calculate credit spread at three selected maturities, that is, 2, 5 and 10

years, for the A and BBB rating classes as the difference between the spot rate of the rating

2Gurkaynak, Sack, and Wright (2007) estimate the Treasury yield curve using a simple smoothing method
and make their data publicly available on the Federal Reserve Board website (last update: December 22, 2011,
http://www.federalreserve.gov/pubs/feds/2008/200805/200805abs.html).
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class and the Treasury yield with the same maturity.

Figure 4 plots lots the time series of credit spreads in percentage at three maturities (2, 5,

and 10 years) for the A and BBB rating classes. The credit spreads are higher for A rating class

than for BBB rating class. Despite of the magnitude difference, the time series of different

credit spreads exhibit strong common movements. We observe three common periods of high

spreads, corresponding to the three recessions in the sample period. In particular, the spikes

around 2008 highlight the periods of the highest spreads that occurred in the recent global

financial crisis.

Table 2 reports the summary statistics of Treasury yields and credit spreads. There are

some noteworthy stylized facts that characterize our bond yields data. The average Treasury

yield curve is upward sloping, while the average credit spread curve is downward sloping; all

series are highly autocorrelated. For a certain maturity, credit spread is higher for the lower

rating class.

3 A No-Arbitrage Term Structure Model

3.1 State Variables

Let Ht be an Nh × 1 vector of state variables at time t and εt+1 be an Nh × 1 vector of

independent standard normal shocks. The observable vector Hm
t contains macroeconomic

variables and financial market variables, while H l
t only contains latent factors. We write the

dynamics of Ht+1 as a first order VAR:

Ht+1 = Θ0 + Θ1Ht + ΣHεt+1, (1)
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where Θ0 is Nh × 1, Θ1 is Nh ×Nh, and ΣH is Nh ×Nh. The risk-free rate, rft is assumed to

be general affine functions of the underlying state vector:

rft = α0 + α1Ht, (2)

where α0 is a scalar and α1 is an Nh × 1 vector. We use monthly data, so we adopt the

one-month yield as the risk-free rate rft . Following Ang and Piazzesi (2003), the stochastic

discount factor (SDF) is given by

Mt+1 = exp(−rft −
1

2
x

′

txt − x
′

tεt+1), (3)

where the market price of risk, xt, follows the affine specification:

xt = ξ0 + ξ1Ht, (4)

in which ξ0 is an Nh × 1 vector, and ξ1 is an Nh × Nh matrix. Here the SDF is a quadratic

function of xt. As a result, the total gross return Rt+1 of any nominal asset satisfies

Et (Mt+1Rt+1) = 1. (5)

For

ΘQ
0 = Θ0 − ΣHξ0, (6)

ΘQ
1 = Θ1 − ΣHξ1, (7)

risk-neutral investor believed that the factors are characterized by a Q-measure VAR given by

Ht+1 = ΘQ
0 + ΘQ

1 Ht + ΣHε
Q
t+1, (8)
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with εQt+1 a vector of independent standard Normal distribution under the Q-measure. There

are three sets of parameters that go into an affine term structure model:

(a) ΘQ
0 , ΘQ

1 , ΣH ; (9)

(b) Θ0, Θ1; (10)

(c) ξ0, ξ1. (11)

If we know any two of these sets of parameters, we could calculate the third using (6) and (7).

3.2 Treasury Yields

Let P TB(Ht, τ) denote the price of a τ -period default-free zero coupon bond at time t. That

is, P TB (Ht, τ) denotes the time-t price of an asset with a fixed payoff of one at time t + τ .

Because this asset has no intermediate payoffs, its return between t and t+ 1 is given as

RTB (Ht+1, τ) =
P TB (Ht+1, τ − 1)

P TB (Ht, τ)
. (12)

Then, equation (5) allows bond prices to be computed recursively by

P TB (Ht, τ) = Et
[
Mt+1P

TB (Ht+1, τ − 1)
]
, (13)

with boundary condition P TB(Ht, 0) = 1. Therefore, Treasury bond prices are exponential

affine functions of the state variables (Ang and Piazzesi (2003)):

P TB(Ht, τ) = exp{−A (τ)−B (τ)T Ht}, (14)
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where

B (τ + 1) = α1 +B (τ) ΘQ
1 , (15)

A (τ + 1) = α0 + A (τ) +B (τ)T ΘQ
0 −

1

2
B (τ)T ΣT

HΣHB (τ) , (16)

with B (0) = 01×Nh
and A (0) = 0. The continuously compounded spot rates are affine

functions of the underlying states,

y(Ht, τ) = − logP TB(Ht, τ)

τ
=
A (τ)

τ
+
B (τ)T

τ
Ht. (17)

The observed yields on zero coupon Treasury bonds are given by

y(t, τ) = y(Ht, τ) + e (t, τ) , (18)

where e (t, τ) denotes the portion of the spot rate that is not explained by the underlying

dynamic factors.

3.3 Corporate Bond Spreads

Duffie and Singleton (1999), and Duffie, Pedersen, and Singleton (2003) show that defaultable

bonds can be valued as if they were risk-free by replacing the short rate rft with a default

adjusted rate rft + sit, where sit for a certain credit-rating class i is an affine function of the

underlying factors,

sit = ηi0 + ηi1Ht + εit, (19)

where εit denotes the portion of the credit spread that is not explained by the underlying factors.

In discrete time, the same is true under the recovery of market value assumption.3 Therefore,

we can write the time-t price of a zero-coupon defaultable bond for a certain credit-rating class

3Previous studies make discretization of continuous-time models, which have served as the building blocks of
numerous theoretical models established in the literature. See, for example, Mueller (2008) and Wu and Zhang
(2008).
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i with time to maturity τ as

PCB
i (Ht, τ) = exp(−Ai (τ)−Bi (τ)T Ht), (20)

with

Bi (τ + 1) = α1 + ηi1 +Bi (τ) ΘQ
1 , (21)

Ai (τ + 1) = α0 + ηi0 + Ai (τ) +Bi (τ)T ΘQ
0 −

1

2
Bi (τ)T ΣT

HΣHBi (τ) , (22)

subject to the boundary conditions Bi (0) = 01×Nh
and Ai (0) = 0.4 The continuously com-

pounded spot rates on the defaultable bond is an affine function of the underlying states,

yi(Ht, τ) = − logPCB
i (Ht, τ)

τ
=
Ai (τ)

τ
+
Bi (τ)T

τ
Ht. (23)

The observed yields on zero coupon defaultable bond are given by

yi(t, τ) = yi(Ht, τ) + ei (t, τ) , (24)

where ei (t, τ) denotes the portion of the spot rate that is not explained by the underlying

dynamic factors. Credit spreads can then be calculated as the difference between the yields on

defaultable and default-free bonds:

CSi(t, τ) = yi(t, τ)− y(t, τ)

=

[
Ai (τ)− A (τ)

τ

]
+

[
Bi (τ)−B (τ)

τ

]T
Ht + ei (t, τ)− e (t, τ) . (25)

This model provides insights into the determinants of the Treasury yields, corporate bond

yields, and the credit spreads.

4For the recursive equations, see Appendix A.
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4 Econometric Methodology

4.1 Basic Framework

In this setup, the risk-free rate, rft is assumed to be general affine functions of the underlying

state vector:

rft = α0 + α1Ht, (26)

where α0 is a scalar and α1 is an Nh × 1 vector. As a result,

rft = α0 + α1mH
m
t + α1lH

l
t . (27)

Since Hm
t is independent of H l

t , the values of α0, α1m can be obtained by OLS estimation of

rft = α0 + α1mH
m
t + vt. (28)

To determine the lags of the VAR for the state variables in Eq. (1), we follow Ang and

Piazzesi (2003) and regress the short rate on economic factors and 12 lags of economic factors,

respectively. The motivations for the two specifications with and without lags in Ang and

Piazzesi (2003) stem from the original Taylor rule and the forward-looking version of the

Taylor rule. Analogously, our two regressions can be regarded as being based on an augmented

Taylor rule with financial market factors and its forward-looking version. As shown in panel

A of Table 3, the coefficients on inflation, real activity, and liquidity factors are significant

and positive. The coefficient on volatility is insignificant, which suggests that the volatility

factor might not be a determinant of the short rate. In contrast, panel B shows that most

parameter estimates for the looking-forward version of the augmented Taylor rule are not

significant, except for the first lag on real activity and liquidity factors. This outcome suggests

that the inclusion of many lags may lead to an overcomplicated and poorly behaved regression

model. Therefore, we will use a VAR (1) for both the observable macro variables and the

latent variables.
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To estimate the model, we first solve for the unobservable factors from the joint dynamics

of the economic factors, Treasury yields, and corporate bond yields. We follow Chen and

Scott (1993), Ang and Piazzesi (2003), and Hamilton and Wu (2012) and assume that as many

yields as unobservable factors are treated as measured without error, and the remaining yields

are measured with error. In particular, we assume that the 1- and 12-month Treasury yields and

24-month BBB-rated corporate bond yields are priced without error, while the 3-, 24-, and 36-

month Treasury yields and 60- and 120-month corporate bond yields are measured with error.

Let Y 1
t denote the (Nl × 1) vector consisting of yields without measurement error and Y 2

t the

remaining (Ne × 1) yields with measurement error. Then, the measurement specification is

given as  Y 1
t

Y 2
t

 =

 C1

C2

+

 D1m D1l

D2m D2l

 Hm
t

H l
t

+

 0

Σe

uet , (29)

where Σe is assumed to be diagonal.

We adopt a VAR(1) for both the observable macroeconomic factors, financial market fac-

tors, and the latent factors:

Hm
t+1 = Θ0m + ΘmmH

m
t + ΘmlH

l
t + Σmmε

m
t+1, (30)

H l
t+1 = Θ0l + ΘlmH

m
t + ΘllH

l
t + Σlmε

m
t+1 + Σllε

l
t+1. (31)

Ang and Piazzesi (2003) propose that the macro dynamics are orthogonal to the unobserved

latent factors, so that terms such as Θml and Θlm are set to zero. In our setup, the macro

dynamics have mean zero by construction, which means Θ0m is set to zero. Ang and Piazzesi

(2003) further assumed that:

Θ0l = 0, (32)

Σlm = 0, (33)

Σll = INl
, (34)
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and

Σmm is lower triangular, (35)

Θll is lower triangular. (36)

Therefore, the structure model is given as

Hm
t = ΘmmH

m
t−1 + Σmmε

m
t (37)

Y 1
t = C1 +D1mH

m
t +D1lH

l
t (38)

Y 2
t = C2 +D2mH

m
t +D2lH

l
t + Σeu

e
t . (39)

4.2 Identification

Following Hamilton and Wu (2012, 2014), we change the structure model to the reduced

model.5 The reduced form is given as

Hm
t = φ∗mmH

m
t−1 + u∗mt (40)

Y 1
t = C∗1 + φ∗1mH

m
t−1 + φ∗11Y

1
t−1 + ψ∗1mH

m
t + u∗1t (41)

Y 2
t = C∗2 + φ∗2mH

m
t + φ∗21Y

1
t + u∗2t, (42)

with

φ∗mm = Θmm (43)

u∗mt = Σmmε
m
t (44)

5For the details, see Appendix B.
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C∗1 = C1 −D1lΘllD
−1
1l C1 (45)

φ∗1m = −D1lΘllD
−1
1l D1m (46)

φ∗11 = D1lΘllD
−1
1l (47)

ψ∗1m = D1m (48)

u∗1t = D1lε
l
t (49)

C∗2 = C2 −D2lD
−1
1l C1 (50)

φ∗2m = D2m −D2lD
−1
1l D1m (51)

φ∗21 = D2lD
−1
1l (52)

u∗2t = Σeu
e
t (53)

V ar


u∗mt

u∗1t

u∗2t

 =


Ω∗m

Ω∗1

Ω∗2

 =


ΣmmΣ

′
mm

D1lD
′

1l

ΣeΣ
′
e

 . (54)

Because u∗mt, u
∗
1t and u∗2t are independent, full information maximum likelihood estimation

is obtained by treating the three blocks separately, and with each block implemented by OLS

equation by equation.

Ω̂∗m = T−1
T∑
t=1

[(
Hm
t − φ̂∗mmHm

t−1

)
·
(
Hm
t − φ̂∗mmHm

t−1

)T]
(55)

Ω̂∗1 = T−1
T∑
t=1

 (Y 1
t − Ĉ∗1 − φ̂∗1mHm

t−1 − φ̂∗11Y 1
t−1 − ψ̂∗1mHm

t

)
·(

Y 1
t − Ĉ∗1 − φ̂∗1mHm

t−1 − φ̂∗11Y 1
t−1 − ψ̂∗1mHm

t

)T
 (56)

Ω̂∗2 = T−1
T∑
t=1

 (Y 2
t − Ĉ∗2 − φ̂∗2mHm

t − φ̂∗21Y 1
t

)
·(

Y 2
t − Ĉ∗2 − φ̂∗2mHm

t − φ̂∗21Y 1
t

)T
 (57)

Table 4 summarizes the mapping between reduced-form and structural parameters. It is

worth noting that α0 cannot be estimated separately from the OLS regression (28), because

the risk-free rate serves a dependent variable not only in the regression (28), but also in the

regression (38). Another important observation is that the 9 elements of α0, ξ0 and η0 can be
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inferred only from the 8 elements of C1 and C2. This implies that α0 and ξ0 are unidentified.

We will discuss how to impose restrictions necessary for identification in Section 4.4.

4.3 Minimum-Chi-Square Estimation

We denote by π the vector consisting of all reduce-form parameters, by L (π;Y ) the log like-

lihood for the entire sample, and by π̂ = arg maxL (π;Y ) the vector of full information

maximum likelihood (FIML) estimates. We assume that R̂ is a consistent estimate of the

information matrix, which satisfies

R = − 1

T
E

[
∂2L (π;Y )

∂π∂π′

]
. (58)

Based on estimate of the information matrix, we could then use the Wald test to examine the

hypothesis that π = g (θ), where θ is a known vector of parameters. The Wald statistic is

calculated as

T [π̂ − g (θ)]
′
R̂ [π̂ − g (θ)] , (59)

and its asymptotic distribution under the null hypothesis follows χ2 (q), where the degree of

freedom q is the dimension of π. As mentioned in Rothenberg (1973), one could also use (59)

to choose an estimate θ̂, which minimizes the chi-square statistic for the estimation. We could

obtain asymptotic standard errors by considering an linear approximation

g (θ) ' g (θ0) +
∂g (θ)

∂θ′ |θ=θ0 (θ − θ0) , (60)

with

γ ≡ g (θ0)− Γθ0,

Γ ≡ ∂g (θ)

∂θ′ |θ=θ0 ,
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where π̂ → π, and we assume there exists a value of θ0 in the true model such that g (θ0) =

π0. We denote by θ̂∗ the linearized minimum-chi-square estimator solving the optimization

problem

min
θ

T [π̂ − γ − Γθ]
′
R [π̂ − γ − Γθ] . (61)

In other words, θ̂∗ satisfies

Γ
′
R
(
π̂ − γ − Γθ̂∗

)
= 0, (62)

or equivalently,

θ̂∗ =
(

Γ
′
RΓ
)−1

Γ
′
R (π̂ − γ) . (63)

Then we have
√
T (π̂ − π0)→ N

(
0, R−1

)
, (64)

and it implies that
√
T
(
θ̂∗ − θ0

)
→ N

(
0,
[
Γ

′
RΓ
]−1)

. (65)

Therefore, Hamilton and Wu (2012) propose to approximate the variance of θ̂ with T−1
[
Γ̂

′
R̂Γ̂
]−1

,

in which Γ̂ = ∂g(θ)

∂θ′
|θ=θ̂. They show that this is identical to the usual asymptotic variance for

the MLE approach. Put differently, the MCSE and MLE are asymptotically equivalent.

When a model is just identified, the minimum value attainable for (59) is zero. Then the

problem in (59) can be simplified as

min
θ

[π̂ − g (θ)]
′
[π̂ − g (θ)] . (66)

It is important to note that in the case where the objective function in (66) is equal to zero, es-

timators resulting from two approaches, i.e., the MCSE and MLE, are asymptotically equiva-

lent. As argued in Hamilton and Wu (2012), the minimum-chi-square algorithm has two major

advantages over the traditional brute-force maximization of the likelihood function, although

θ̂MCSE is identical to θ̂MLE . First, checking whether (66) equals zero yields an observation on

whether θ̂ corresponds to a global maximum of the original likelihood surface. However, using
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the traditional approach requires hundreds of starting values to ensure a global maximum is

indeed achieved. A second advantage is that the new optimization problem is computationally

much simpler than the original likelihood function.

4.4 Estimation for Macro Finance Model

In this section, we discuss how to estimate our system and how to impose additional restric-

tions to facilitate the estimation. As discussed in Section 4.2, we have three independent

blocks in the reduced-form equations (40)-(42). We assume that Y m
t = Hm

t , and then the

structure of block i for i = 1, 2,m can be written in a compact as

Y m
t = Π

′

ixit + u∗it (67)

u∗it ∼ N (0,Ω∗i ) . (68)

Following Magnus and Neudecker (1988), the information matrix for all reduced-form param-

eters takes the form as

R̂ =


R̂m 0 0

0 R̂1 0

0 0 R̂2

 (69)

where

R̂i =

 Ω̂∗−1i ⊗ T−1ΣT
t=1xitx

′
it 0

0 1
2
D′qi

(
Ω̂∗−1i ⊗ Ω̂∗−1i

)
Dqi

 (70)

for DN the N2×N(N + 1)/2 duplication matrix satisfying DNvech(Ω) = vec(Ω).The struc-

tural parameters Σe introducing measurement errors only exist in the block Ω∗2, and thereby

R2, and no other parameters appear in this block. The 5 structural parameters capturing mea-

surement errors in Σe are just-identified by the 5 diagonal elements of Ω̂∗2. Using the MCSE

approach yields the estimates of diagonal elements of Ω∗2. It is then easy to obtain the esti-

mates of Σe by taking the square roots of the above diagonal elements of Ω̂∗2. As proposed by

Ang and Piazzesi (2003), α̂1m can be obtained by implementing the OLS method based on the
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assumption that macro variables and latent factors are independent (see equation (28)). Then

our system can be estimated by the minimum-chi-square method. The objective function in

(59) is given by

π̂ =

([
vec
(

Π̂1

)]′
,
[
vech

(
Ω̂∗1

)]′
,
[
vec
(

Π̂2

)]′)′

(71)

R̂ =


Ω̂∗−11 ⊗ T−1ΣT

t=1x1tx
′
1t 0 0

0 1
2
D′3

(
Ω̂∗−11 ⊗ Ω̂∗−11

)
D3 0

0 0 Ω̂∗−12 ⊗ T−1ΣT
t=1x2tx

′
2t

 (72)

x1t =
(
1, Hm′

t−1, Y
1′
t−1, H

m′
t

)′ (73)

x2t =
(
1, Hm′

t , Y 1′
t

)′ (74)

Π̂′i =
(
ΣT
i=1Y

i
t x
′
it

) (
ΣT
i=1xitx

′
it

)−1
for i = 1, 2 (75)

Ω̂∗1 = T−1ΣT
i=1

(
Y 1
t − Π̂′1x1t

)(
Y 1
t − Π̂′1x1t

)′
(76)

Ω̂∗2 = T−1ΣT
i=1


[û2t(1)]2 ... 0

... ...

0 ... [û2t(Ne)]
2

 , (77)

with û2t(j) the jth element of Y 2
t − Π̂′2x2t.

Following Ang and Piazzesi (2003) and Hamilton and Wu (2012), we impose further re-

strictions on parameters to achieve identification. The parameters fixed at zero include the

(2,1) and (3,1) elements of Θll (which was already lower triangular), the (1,2), (2,2), (3,2) and

(1,3) elements of ξll , all four elements in ξ0m, and the second and third elements of ξ0l. In

order to optimize the objective function, we need to calculate the estimates of 37 remaining

unknown parameters, 1 in ΘQ
0 , 16 in ΘQ

mm, 5 in ΘQ
ll , 4 in Θll, 1 in ηBBB0 , 7 in ηBBB1 , and 3

in α1l.6 After getting the parameters of (a) and (b) for the affine structure model, we could

6Following Ang and Piazzesi (2003) and Hamilton and Wu (2012), we change the parameterization to im-
prove the numerical performance of the MCSE algorithms. Particularly, we impose the restrictions such that Θll

and ΘQ
ll take the following forms: Θll =

 θ1 0 0
0 θ2 0
0 θ3 θ4

 , and ΘQ
ll =

 θ5 0 0
θ6 θ2 θ7
θ8 θ3 θ9

 .
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calculate the parameters of the market price of risk, 1 in ξ0l, 16 in ξ1m, 5 in ξ1l, using 6 and

7. Based on the parameters of (a), (b), and (c), we can numerically solve for the unknown

parameters of rated-A corporate bond, 1 in ηBBB0 , 7 in ηBBB1 , by using equations (21) and

(22).

5 Estimation Results

5.1 Unrestricted Estimation

For a preliminary view of how Treasury yields and credit spreads respond to macro factors,

we run some unrestricted OLS regressions. Table 5 reports the estimation results from the

regressions of Treasury yields with three different maturities (2, 5, and 10 years) on economic

factors. Two types of specifications are considered: one only with inflation and real activity

as the regressors, and the other one with all four macro factors. The adjusted R2 of all the

estimated models exceeds 35%. These numbers suggest that economic factors should help

explain the dynamics of Treasury yields, which is consistent with previous studies. This ex-

planatory power might be lower for long-term bonds, because the adjusted R2 decreases with

the bond maturity. While the coefficients on inflation and real activity factors are significant

in all specifications, the coefficient on volatility factor is never significant, and neither is the

liquidity factor in the estimation for 10-year Treasury yields. Moreover, adding the latter two

regressors only marginally improves the model fit as reflected by the adjusted R2 in the bot-

tom panel of Table 5 . These facts together imply that the explanatory power of the financial

market factors for Treasury yield movements should be limited.

Table 6 and Table 7 present the unrestricted OLS estimation results for the A and BBB

credit spreads, respectively. In contrast to the Treasury yield regression results, the inclusion

of financial market factors gives rise to a substantial improvement in the goodness of fit, and

this effect is more pronounced for the A credit spread than for the BBB credit spread. This

highlights the vital role of financial market factors in describing the dynamics of credit spreads,
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particularly the dynamics of higher-rated credit spreads. The coefficients on the liquidity and

volatility factors are highly significant. The coefficient on the liquidity factor is negative,

while that on the volatility factor is positive. This is consistent with the previous literature that

credit spreads widen as the aggregate market liquidity condition deteriorates and the market

as a whole becomes more volatile.7

5.2 Estimation with No-Arbitrage Restrictions

Now we turn to the model with no-arbitrage restrictions imposed. The results of the MCSE of

Treasury yields and corporate bond yields for 100 different starting values are shown in Table

8. Another advantage of the MCSE is that the value for the objective function itself gives us

an immediate test of the various overidentifying restrictions. We have 82 known parameters

in the reduced form model in Eq.(71) and 37 unknown parameters in ATSM. As a result, we

do have 45 degree of freedom. The 1% critical value for a χ2(45) variable is 70. Thus, the

observed minimum value (11.25) provides evidence that the restrictions imposed by the model

are consistent with the observed data.

The autocorrelations of the three latent factors are large, implying that they are highly

persistent. The intercept estimate on the Treasury yields measures the long-term means of

the instantaneous Treasury yields, which is estimated at 0.27% and significant. The intercept

estimates on the corporate yields measure the fixed component of the instantaneous credit

spread, which are 0.36% for A-rated corporate bonds and 0.44% for B-rated corporate bonds.

As expected, the compensation for credit risk is higher for higher-rated bonds.

The slope estimates on Treasury yields measure the initial response of the instantaneous

Treasury yields to unit shocks on the seven factors. The estimates for the macro factors are

positive and are larger than those for the financial market factors, suggesting that the latter

variables only play a marginal role in the dynamics of the short Treasury yields. The absolute

magnitude of the slope estimates on the short spread gets much higher for financial market

7See Wu and Zhang (2008) for the effect of financial market volatility on credit spreads and Lin, Wang, and
Wu (2011) for the effect of liquidity.
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factors. In particular, the liquidity factor even becomes the most important driver of the short

spread, and this variation is more pronounced for the A-rated bonds. Thus, in contrast to the

finding of Wu and Zhang (2008) that financial market volatility factor is a major determinant

of the credit spread term structure, our results show that the liquidity factor is more important

than the volatility factor for capturing the dynamics of credit spreads.

5.3 Factor Loadings and Impulse Responses

Figure 5 illustrates how Treasury yields and corporate yields respond to a one standard devia-

tion change in macro factors. As shown in panel (a), the loadings on inflation are positive for

Treasury yields but negative for corporate yields, implying that positive inflation shocks lead

to higher Treasury yields but lower corporate yields. For a certain maturity, the absolute mag-

nitudes of inflation loadings are larger for corporate yields than for Treasury yields. Thus, the

former is contemporaneously more sensitive to inflation change than the latter. Furthermore,

it declines with maturity for both Treasury and corporate yields and exhibits a convergence to

the long-run mean. Hence, long yields are less subject to inflation change than short yields.

Similar patterns are observed for the real activity loadings in panel (b). One primary distinc-

tion is that the real activity loadings of the BBB corporate yields become larger than those of

the A corporate yields and intensify with maturity.

Figure 6 shows the loadings of Treasury yields and corporate yields on financial market

factors. Treasury yields have rather small loadings on both the liquidity and volatility fac-

tors. This is consistent with the unrestricted estimation results that Treasury yields are more

influenced by macro factors than by financial market factors. The loadings on liquidity for

both the BBB and A corporate yields are negative and decline in absolute value with maturity.

Moreover, the liquidity loadings are larger in absolute value for the A corporate yields than for

the BBB corporate yields, which suggests that the initial reaction to funding liquidity shocks

is stronger for higher-rated bonds. As shown in panel (b), the loadings on the volatility factor

differ between the two corporate yields; whereas the volatility loadings of the BBB corporate
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yields are largely flat and remain positive across bond maturities, those of the A corporate

yields are negative when the maturity is short and display an upward trend. This implies that

for A-rated bonds, short and long yields react to the volatility change in different directions.

With factor loadings of Treasury yields and corporate yields, one can easily derive the

factor loadings of credit spreads using equation (25). The results are shown in Figure 7 and

Figure 8, which include economic factor loadings and latent factor loadings, respectively. The

inflation, real activity and liquidity loadings of both the A and BBB credit spreads are high

when the maturity is short and converge fast to their long term means, while the volatility

loadings increase with maturity. Thus, the contemporaneous reaction to economic factors is

generally larger for short spreads than for long spreads, except for the volatility factor. In

contrast to Treasury yields, credit spreads load heavily on both the liquidity and volatility

factors. This is consistent with the unrestricted regression results and justifies the importance

of those factors for explaining credit spreads. The liquidity loadings are negative and higher in

absolute value for the A credit spreads. This implies that funding liquidity shrinkage widens

the credit spreads and this effect is more pronounced for those at a high-rating class. The

observation that the volatility factor generally exerts a positive effect on the credit spread term

structure is consistent with Wu and Zhang (2008). However, this effect is reversed for short

A credit spreads. As shown in Figure 8, the loadings on the three latent factors behave in a

similar fashion for both the A and BBB credit spreads.

Figure 9 illustrates the impulse response functions of 24-, 60- and 120-month Treasury

yields. The impulse responses for all factors are large in absolute value at short horizon and

level off slowly towards zero. The impulse response for inflation and real activity remains

positive even after 12 months, whereas those for liquidity and volatility quickly fade away

within one year; this effect is more pronounced for long-term Treasury yields. This implies

that macroeconomic shocks have a more persistent impact on Treasury yields than do finan-

cial market shocks. The transient effects of financial market shocks are quite large: shocks

to the volatility factor have even larger impacts on long-term Treasury yields than those to

macro factors at the very short horizon. Figure 10 and Figure 11 plot the impulse response
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functions of 24-, 60- and 120-month A and BBB credit spreads, respectively. Liquidity has

larger instantaneous effects on the A credit spreads than on the BBB credit spreads. For all

corporate bonds under consideration, the initial response of their credit spreads to financial

market factors is much larger than that to macro factors. However, in general, this relation-

ship is reversed after one year, implying that macro factors have more persistent effects on the

credit spread term structure compared to financial market factors.

5.4 Forecasts

A true out-of-sample analysis would be to estimate the model based on data up to and includ-

ing today, construct a forecast of tomorrow’s value at T + 1, wait until tomorrow, record the

forecast error at T + 1, re-estimate the model, make a new forecast of true value at T + 2, and

so forth. At the end of this exercise, one would have a sample of forecast errors which would

be truly out-of-sample and would give a very realistic picture of the model’s performance.

Since this procedure is very time-consuming, we instead resort to "pseudo," or "simulated,"

out-of-sample analysis, which means to mimic the procedure described above, using some

historical date T0<T , rather than today’s date T , as a starting point. The resulting forecasting

errors are then used to assess the model’s out-of-sample forecasting ability.

We perform a comparison of out-of-sample forecasts for credit spreads for three models.

First, we investigate out-of-sample forecasts for two VAR(1) models without cross-equation

restrictions induced by no-arbitrage condition. The first VAR involves two macro factors (in-

flation and real activity), and the second incorporates both macro factors and financial market

factors (liquidity and volatility). Our last model is a VAR(1) model with four economic factors

and cross-equation restrictions. We forecast over the last 36 months of our sample, which is

chosen to avoid forecasting abnormal yields in recent financial crisis. We record the root mean

square error (RMSE) and the mean absolute deviation (MAD) of the forecast versus the actual

value as criteria for comparing the forecasting abilities of different models.

Table 9 shows the comparisons of the out-of-sample forecasts. Lower RMSE and MAD
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denote better forecasts. The best forecasts are highlighted in bold. Two important points are

noteworthy. First, incorporating financial market variables improves forecasts. In terms of

both the RMSE and MAD criteria, the models with four factors uniformly outperformed the

model with only macro factors (except for the 120-month A credit spreads). The improve-

ment in forecasting performance is much more noticeable for short-term credit spreads, which

is consistent with the previous result that the explanatory power of financial market factors

for credit spreads emerges primarily at the short end of the yield curve. Second, imposing

the cross-equation restrictions induced by no-arbitrage improves forecasts. This is strongly

supported by the results of the RMSE: the no-arbitrage model outperforms the other two un-

restricted models (except for 24-month A credit spreads). However, less evidence is found

in results of the MAD, as the no-arbitrage model provides the best forecast only for the 24-

month BBB credit spreads. This mismatch is likely due to the fact that the RMSE penalizes

large errors more than the MAD does. Given that the MADs for the no-arbitrage model are

close to those for the four-factor model and large errors are undesirable in our context, we can

still conclude that adding term structure restrictions helps in forecasting.

6 Conclusion

This paper presents and estimates a no-arbitrage Gaussian affine term structure model of inter-

est rate and credit spreads with observable economic variables and traditional latent variables.

In addition to macro variables, financial market variables are included in the set of observable

variables. The estimation is performed using a minimum-chi-square method, which is much

more efficient and reliable than the widespread MLE. By estimating the model, we quan-

tify the effects of economic variables on the whole term structure of interest rates and credit

spreads and explore their role in forecasting.

We find that macro factors are important determinants of both Treasury yields and credit

spreads. Positive inflation and real activity shocks increase Treasury yields but decrease credit

spreads. In contrast, financial market factors only have marginal effects on the Treasury yield
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curve but exert substantial impacts on the credit spread term structure. The volatility factor

has positive effects on the BBB credit spreads. Its effects on the A credit spreads are negative

at the short end of the credit spreads curve but turn positive at the middle. Funding liquidity

shrinkage remarkably widens credit spreads, and this effect is strongest at the short end of

the credit spread term structure. We show that adding financial market factors substantially

improves forecasts for credit spreads. Imposing no-arbitrage restrictions further helps in out-

of-sample forecasts.
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A Discretization

A.1 State Variables

Following Wu and Zhang (2008), we consider a flexible specification, under which the factor

dynamics under the risk-neutral Q-measure,

dHt = κQ
(
θQ −Ht

)
dt+ ΣHdW

Q
t , (78)

where Ht is an Nh× 1 vector of state variables at time t. Under this specification, the variable

that determines the price of risk, xt, is assumed to be general affine functions of the underlying

state vector:

xt = ξ0 + ξ1Ht, (79)

where ξ0 is a scalar.

As a result,

Ht+1 −Ht = κQ
(
θQ −Ht

)
+ ΣHε

Q
t+1,

Ht+1 = κQθQ +
(
I − κQ

)
Ht + ΣHε

Q
t+1.

Let κQθQ ≡ ΘQ
0 ,
(
I − κQ

)
≡ ΘQ

1 , then

Ht+1 = ΘQ
0 + ΘQ

1 Ht + ΣHε
Q
t+1. (80)

A.2 Term Structure of Treasury Yields

In our model, the risk-free rate, rft , is assumed to be a general affine functions of the underlying

state vector:

rft = α0 + α1Ht + εrt , (81)
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where α0 is a scalar and εrt denotes movements in the instantaneous interest rate that are not

explained by the underlying dynamic factors. We can write the time-t price of a default-free

zero coupon bond with time to maturity τ as

P TB (t, τ) = EQ
t

[
exp

(
−
ˆ t+τ

t

rfs ds

)]
= EQ

t

[
exp

(
−
ˆ t+τ

t

(α0 + α1Hs) ds

)]
· EQ

t

[
exp

(
−
ˆ t+τ

t

εrsds

)]
= P TB(Ht, τ)E (t, τ) , (82)

where EQ
t [·] denotes the expectation under Q-measure conditional on time-t filtration Ft.

Under this specification, P TB(Ht, τ) is the exponential affine function of the state vari-

ables (Ang and Piazzesi (2003)):

P TB(Ht, τ) = exp{−A (τ)−B (τ)T Ht}, (83)

where the coefficients A (τ) and B (τ) are solutions to the following ordinary differential

equations:

B
′
(τ) = α1 −

(
κQ
)T
B (τ) , (84)

A
′
(τ) = α0 +B (τ)T κQθQ − 1

2
B (τ)T ΣT

HΣHB (τ) , (85)

with B (0) = 01×Nh
and A (0) = 0.

As a result,

B (τ + 1)−B (τ) = α1 −
(
κQ
)T
B (τ) ,

B (τ + 1) = α1 +
[
I −

(
κQ
)T]

B (τ) ,

B (τ + 1) = α1 +B (τ) ΘQ
1 .
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Therefore,

B (τ + 1) = α1

((
ΘQ

1

)τ
+
(

ΘQ
1

)τ
+ ...+ ΘQ

1 + 1
)

= α1


(

ΘQ
1

)τ+1

− 1

ΘQ
1 − 1

 , (86)

and

B (τ + 1)

τ + 1
=

α1

τ + 1


(

ΘQ
1

)τ+1

− 1

ΘQ
1 − 1

 . (87)

Also, we have

A (τ + 1)− A (τ) = α0 +B (τ)T κQθQ − 1

2
B (τ)T ΣT

HΣHB (τ) ,

A (τ + 1)− A (τ) = α0 +B (τ)T ΘQ
0 −

1

2
B (τ)T ΣT

HΣHB (τ) . (88)

Indeed,

A (1) = α0, (89)

A(2) = α0 + A(1) +B (1)T ΘQ
0 −

1

2
B (1)T ΣT

HΣHB (1) , (90)

A(3) = α0 + A(2) +B (2)T ΘQ
0 −

1

2
B (2)T ΣT

HΣHB (2)

= 3α0 +
(
B (1)T +B (2)T

)
ΘQ

0

−1

2

[
B (1)T ΣT

HΣHB (1) +B (2)T ΣT
HΣHB (2)

]
, (91)

therefore,

A (τ + 1) = (τ + 1)α0 +
(
B (1)T + ...+B (τ)T

)
ΘQ

0

−1

2

[
B (1)T ΣT

HΣHB (1) + ...+B (τ)T ΣT
HΣHB (τ)

]
, (92)
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and

A (τ + 1)

τ + 1
= α0 +

1

τ + 1

(
B (1)T + ...+B (τ)T

)
ΘQ

0

−1

2

1

τ + 1

[
B (1)T ΣT

HΣHB (1) + ...+B (τ)T ΣT
HΣHB (τ)

]
. (93)

The continuously compounded spot rates are affine functions of the underlying states:

y(Ht, τ) = − logP TB(Ht, τ)

τ
=
A (τ)

τ
+
B (τ)T

τ
Ht. (94)

The observed yields on zero coupon Treasury bonds are given by

y(t, τ) = y(Ht, τ) + e (t, τ) , (95)

where e (t, τ) = − ln(E (t, τ))/τ denotes the portion of the spot rate that is not explained by

the underlying dynamic factors.

A.3 Term Structure of Corporate Yields and Credit Spreads

Duffie and Singleton (1999), and Duffie, Pedersen, and Singleton (2003) show that defaultable

bonds can be valued as if they were risk-free by replacing the short rate rft with a default

adjusted rate rft + st, where sit for a certain credit-rating class i is an affine function of the

underlying factors,

sit = ηi0 + ηi1Ht + εit, (96)

where εit denotes the portion of the credit spread that is not explained by the underlying factors.

Therefore, we can write the time-t price of a zero-coupon defaultable bond for a certain credit-
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rating class i with time to maturity τ as

PCB
i (t, τ) = EQ

t

[
exp

(
−
ˆ t+τ

t

(
rfu + siu

)
du

)]
= EQ

t

[
exp

(
−
ˆ t+τ

t

(
α0 + α1Hu + ηi0 + ηi1Hu

)
du

)]
· EQ

t

[
exp

(
−
ˆ t+τ

t

(
εru + εiu

)
du

)]
= PCB

i (Ht, τ)Ei (t, τ) , (97)

with

PCB
i (Ht, τ) = exp(−Ai (τ)−Bi (τ)T Ht),

where the coefficients Ai (τ) , and Bi (τ) are solutions to the ordinary differential equations:

B
′

i (τ) = α1 + ηi1 −
(
κQ
)T
Bi (τ) , (98)

A
′

i (τ) = α0 + ηi0 +Bi (τ)T κQθQ − 1

2
Bi (τ)T ΣT

HΣHBi (τ) , (99)

subject to the boundary conditions Bi (0) = 01×Nh
and Ai (0) = 0. As a result,

Bi (τ + 1)−Bi (τ) = α1 + ηi1 −
(
κQ
)T
Bi (τ) ,

Bi (τ + 1) = α1 + ηi1 +
[
I −

(
κQ
)T]

Bi (τ) ,

Bi (τ + 1) = α1 + ηi1 +Bi (τ) ΘQ
1 .

Therefore,

Bi (τ + 1) =
(
α1 + ηi1

) ((
ΘQ

1

)τ
+
(

ΘQ
1

)τ
+ ...+ ΘQ

1 + 1
)

=
(
α1 + ηi1

)
(

ΘQ
1

)τ+1

− 1

ΘQ
1 − 1

 , (100)

and

Bi (τ + 1)

τ + 1
=

(α1 + ηi1)

τ + 1


(

ΘQ
1

)τ+1

− 1

ΘQ
1 − 1

 . (101)
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Also, we have

Ai (τ + 1)− Ai (τ) = α0 + ηi0 +Bi (τ)T κQθQ − 1

2
Bi (τ)T ΣT

HΣHBi (τ) ,

Ai (τ + 1)− Ai (τ) = α0 + ηi0 +Bi (τ)T ΘQ
0 −

1

2
Bi (τ)T ΣT

HΣHBi (τ) . (102)

Indeed,

Ai (1) = α0 + ηi0, (103)

Ai(2) = α0 + ηi0 + Ai(1) +Bi (1)T ΘQ
0 −

1

2
Bi (1)T ΣT

HΣHBi (1) , (104)

Ai(3) = α0 + ηi0 + Ai(2) +Bi (2)T ΘQ
0 −

1

2
Bi (2)T ΣT

HΣHBi (2)

= 3
(
α0 + ηi0

)
+
(
Bi (1)T +Bi (2)T

)
ΘQ

0

−1

2

[
Bi (1)T ΣT

HΣHBi (1) +Bi (2)T ΣT
HΣHBi (2)

]
. (105)

Therefore,

Ai (τ + 1) = (τ + 1)
(
α0 + ηi0

)
+
(
Bi (1)T + ...+Bi (τ)T

)
ΘQ

0

−1

2

[
Bi (1)T ΣT

HΣHBi (1) + ...+Bi (τ)T ΣT
HΣHBi (τ)

]
, (106)

and

Ai (τ + 1)

τ + 1
=

(
α0 + ηi0

)
+

1

τ + 1

(
Bi (1)T + ...+Bi (τ)T

)
ΘQ

0

−1

2

1

τ + 1

[
Bi (1)T ΣT

HΣHBi (1) + ...+Bi (τ)T ΣT
HΣHBi (τ)

]
. (107)

The continuously compounded spot rates on the defaultable bond is an affine function of the

underlying states,

yi(Ht, τ) = − logPCB
i (Ht, τ)

τ
=
Ai (τ)

τ
+
Bi (τ)T

τ
Ht. (108)
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The observed yields on zero coupon defaultable bond are given by

yi(t, τ) = yi(Ht, τ) + ei (t, τ) , (109)

where ei (t, τ) = − ln(Ei (t, τ))/τ denotes the portion of the spot rate that is not explained

by the underlying dynamic factors. Credit spreads can then be calculated as the difference

between the yields on defaultable and default-free bonds:

CSi(t, τ) = yi(t, τ)− y(t, τ)

=

[
Ai (τ)− A (τ)

τ

]
+

[
Bi (τ)−B (τ)

τ

]T
Ht + ei (t, τ)− e (t, τ) . (110)

This model provides insights into the determinants of the Treasury yields, corporate bond

yields, and the credit spreads.

B Estimation

In our model setup, the structure model is given as

Hm
t = ΘmmH

m
t−1 + Σmmε

m
t (111)

Y 1
t = C1 +D1mF

m
t +D1lH

l
t (112)

Y 2
t = C2 +D2mF

m
t +D2lH

l
t + Σeu

e
t (113)

Then we have

Hm
t = φ∗mmH

m
t−1 + u∗mt (114)

with

φ∗mm = Θmm, (115)

u∗mt = Σmmε
m
t . (116)
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We substitute H l
t = D−11l (Y 1

t − C1 −D1mH
m
t ) into the equation (113) for Y 2

t ,

Y 2
t = C2 +D2mH

m
t +D2lH

l
t + Σeu

e
t

= C2 +D2mH
m
t +D2lD

−1
1l

(
Y 1
t − C1 −D1mH

m
t

)
+ Σeu

e
t

= C2 −D2lD
−1
1l C1 +

(
D2m −D2lD

−1
1l D1m

)
Hm
t +D2lD

−1
1l Y

1
t + Σeu

e
t . (117)

That is,

Y 2
t = C∗2 + φ∗2mH

m
t + φ∗21Y

1
t + u∗2t (118)

C∗2 = C2 −D2lD
−1
1l C1 (119)

φ∗2m = D2m −D2lD
−1
1l D1m (120)

φ∗21 = D2lD
−1
1l (121)

u∗2t = Σeu
e
t/ (122)

Also, we have

Y 1
t = C1 +D1mH

m
t +D1lH

l
t

= C1 +D1mH
m
t +D1l(ΘllH

l
t−1 + Σllε

l
t)

= C1 +D1mH
m
t +D1l(ΘllD

−1
1l

(
Y 1
t−1 − C1 −D1mH

m
t−1
)

+ Σllε
l
t)

= C1 −D1lΘllD
−1
1l C1 +D1mH

m
t +D1lΘllD

−1
1l Y

1
t−1 −D1lΘllD

−1
1l D1mH

m
t−1 +D1lε

l
t.
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That is,

Y 1
t = C∗1 + φ∗1mH

m
t−1 + φ∗11Y

1
t−1 + ψ∗1mH

m
t + u∗1t (123)

C∗1 = C1 −D1lΘllD
−1
1l C1 (124)

φ∗1m = −D1lΘllD
−1
1l D1m (125)

φ∗11 = D1lΘllD
−1
1l (126)

ψ∗1m = D1m (127)

u∗1t = D1lε
l
t. (128)

As a result, the reduced form is given as

Hm
t = φ∗mmH

m
t−1 + u∗mt (129)

Y 1
t = C∗1 + φ∗1mH

m
t−1 + φ∗11Y

1
t−1 + ψ∗1mH

m
t + u∗1t (130)

Y 2
t = C∗2 + φ∗2mH

m
t + φ∗21Y

1
t + u∗2t (131)

V ar


u∗mt

u∗1t

u∗2t

 =


Ω∗m

Ω∗1

Ω∗2

 =


ΣmmΣ

′
mm

D1lD
′

1l

ΣeΣ
′
e

 . (132)

Because u∗mt, u
∗
1t and u∗2t are independent, full-information-maximum likelihood estimation

is obtained by treating the three blocks separately, and wit each block implemented by OLS

equation by equation.

Ω̂∗m = T−1
T∑
t=1

[(
Hm
t − φ̂∗mmHm

t−1

)
·
(
Hm
t − φ̂∗mmHm

t−1

)T]
(133)

Ω̂∗1 = T−1
T∑
t=1

 (Y 1
t − Ĉ∗1 − φ̂∗1mHm

t−1 − φ̂∗11Y 1
t−1 − ψ̂∗1mHm

t

)
·(

Y 1
t − Ĉ∗1 − φ̂∗1mHm

t−1 − φ̂∗11Y 1
t−1 − ψ̂∗1mHm

t

)T
 (134)

Ω̂∗2 = T−1
T∑
t=1

 (Y 2
t − Ĉ∗2 − φ̂∗2mHm

t − φ̂∗21Y 1
t

)
·(

Y 2
t − Ĉ∗2 − φ̂∗2mHm

t − φ̂∗21Y 1
t

)T
 . (135)
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C Log Likelihood for the Macro Model

The P dynamics can be written as a special case of a first-order VAR by using the companion

form Ht =
[
Hm′
t , H l′

t

]′
, Θ0 =

[
0
′
4×1,Θ

′

0l

]′
, and

Θ1 =


Θmm

(4× 4)
0

0
Θll

(3× 3)

 (136)

ΣH =


Σmm

(4× 4)
0

0
Σll

(3× 3)

 . (137)

Ang and Piazzesi (2003) and Hamilton and Wu (2012) imposed the restriction in the market

price of risk, xt, that the parameters in the affine specification are characterized by ξ0 =[
ξ
′
0m, ξ

′

0l

]′
and

ξ1

(7×7)
=


ξ1m

(4× 4)
0

0
ξ1l

(3× 3)

 . (138)

From

ΘQ
0 = Θ0 − ΣHξ0, (139)

ΘQ
1 = Θ1 − ΣHξ1, (140)
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we can have ΘQ
0 =

[
ΘQ′

0m,Θ
Q

′

0l

]′
and

ΘQ
1 =


ΘQ
mm

(4× 4)
0

0
ΘQ
ll

(3× 3)

 . (141)

In our setup, we use Nl = 3 and Ne = 5, assuming that the 1-, and 12-month Treasury yields

and 24-month corporate bond yields are priced without error, while the 3-, 24-, and 36-month

Treasury yields and 60- and 120-month corporate bond yields are priced with error, so that the

D matrices can be written in partitioned form as


D0

1m

(3× 4)

D1l

(3× 3)

D0
2m

(5× 4)

D2l

(5× 3)

 =



B (1)T /1

B (12)T /12

Bi (24)T /24

B (3)T /3

B (24)T /24

B (36)T /36

Bi (60)T /60

Bi (120)T /120



. (142)

The conditional density for this case is given by

f
(
Hm
t , Yt|Hm

t−1, Yt−1
)

=
1

|det(J)|
f
(
Hm
t , H

l
t , u

e
t |Hm

t−1, H
l
t−1, u

e
t−1
)
. (143)

where

f
(
Hm
t , H

l
t , u

e
t |Hm

t−1, H
l
t−1, u

e
t−1
)

= f
(
Hm
t |Hm

t−1
)
f
(
H l
t|H l

t−1
)
f (uet ) , (144)

f
(
Hm
t |Hm

t−1
)

= φ
(
Hm
t ; ΘmmH

m
t−1,ΣmmΣ

′

mm

)
, (145)

f
(
H l
t|H l

t−1
)

= φ
(
H l
t ; ΘllH

l
t−1,ΣllΣ

′

ll

)
, (146)
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f (uet ) = φ (uet ; 0, INe) , (147)

φ (y;µ,Ω) =
1

(2π)M/2 |Ω|1/2
exp

[
−(y − µ)

′
Ω−1 (y − µ)

2

]
(148)

H l
t = D−11l (Y 1

t − C1 −D1mH
m
t ) (149)

uet = Σ−1e (Y 2
t − C2 −D2mH

m
t −D2lH

l
t) (150)

J =

 D1l 0

D2l Σe

 . (151)

The traditional approach (Ang and Piazzesi (2003)) is to arrive at estimates of these parameters

by numerical maximization of

L(θ;Y ) =
T∑
t=1

log f
(
Hm
t , Yt|Hm

t−1, Yt−1
)
. (152)
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Table 1: Summary statistics of economic variables

Variables Central moments Autocorrelations

Mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3
CPI 1.193 0.552 -0.263 4.515 0.950 0.862 0.775
PPI 1.056 1.112 -0.321 3.541 0.938 0.848 0.749
PCEde 0.967 0.449 0.002 3.936 0.963 0.899 0.828

GEMP 0.391 0.620 -1.648 6.104 0.971 0.945 0.908
GIP 0.840 1.831 -2.062 8.606 0.976 0.940 0.890
UE 6.064 1.595 0.887 2.840 0.995 0.989 0.980

3MTED 0.562 0.395 2.363 12.896 0.877 0.756 0.692
6MTED 0.582 0.358 1.789 7.971 0.928 0.859 0.806
3MCPMFFR 0.127 0.264 2.346 17.316 0.797 0.678 0.579

VXO 1.286 0.163 0.454 3.072 0.856 0.771 0.731
VIX 1.277 0.153 0.547 3.383 0.829 0.735 0.692

The table reports the summary statistics of economic variables. The inflation measures CPI,
PPI, and PCEde are CPI inflation, PPI inflation, and PCE deflator respectively. The real ac-
tivity measures GEMP, GIP, and UE are the growth rate of employment, the growth rate in in-
dustrial production, and the unemployment rate, respectively. The liquidity measures 3MTED,
6MTED, and 3MCPMFFR are 3-month LIBOR minus T-bill spread, 6-month LIBOR minus
T-bill spread, and 3-month commercial paper minus federal funds rate, respectively. The
volatility measures VIX and VXO are the VIX index and VXO index, respectively. The sam-
ple period is 1988:12 to 2013:05.
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Table 2: Summary statistics of Treasury yields and credit spreads

Central moments Autocorrelations
Mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3

Treasury Yields

1 month 3.335 2.313 0.061 2.063 0.990 0.981 0.971
3 month 3.503 2.421 0.071 2.074 0.996 0.989 0.980
24 month 4.101 2.394 -0.079 2.081 0.993 0.984 0.973
60 month 4.735 2.128 -0.111 2.275 0.991 0.980 0.968
120 month 5.458 1.794 -0.048 2.453 0.989 0.977 0.967

A-rated Spreads

24 month 1.220 1.204 4.127 22.261 0.961 0.903 0.843
60 month 1.129 0.867 3.222 16.064 0.962 0.906 0.844
120 month 1.074 0.770 2.885 13.673 0.965 0.920 0.871

BBB-rated Spreads

24 month 1.871 1.431 2.974 14.088 0.965 0.913 0.855
60 month 1.750 1.100 3.152 16.337 0.964 0.905 0.832
120 month 1.642 0.937 2.750 13.763 0.968 0.914 0.851

The table reports the summary statistics of Treasury yields and credit spreads. The 1-, 3-,
24-, 60-, and 120-month Treasury yields are annual zero coupon bond yields. The 1-, 3-,
24-, 60-, and 120-months credit spreads under the A and BBB rating classes are calculated as
the difference between the spot rate of the rating class and the Treasury yield with the same
maturity. The sample period is 1988:12 to 2013:05.
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Table 3: The dependence of the short rate on economic factors

Inflation Real Activity Liquidity Volatility

Panel A: Regressing short rate on economic factors (adjusted R2 = 0.52)
t 0.043 (9.600) 0.059 (9.974) -0.018 (-2.944) 0.001 (0.177)

Panel B: Regressing short rate on 12 lags of economic factors (adjusted R2 = 0.77)
t 0.023 (1.627) 0.098 (3.672) 0.028 (3.149) 0.012 (1.539)
t-1 -0.008 (-0.315) 0.022 (0.603) 0.006 (0.563) 0.003 (0.325)
t-2 0.005 (0.180) -0.021 (-0.561) -0.003 (-0.307) 0.011 (1.171)
t-3 0.003 (0.118) 0.002 (0.057) -0.007 (-0.623) 0.006 (0.681)
t-4 -0.009 (-0.375) -0.014 (-0.379) 0.003 (0.278) -0.002 (-0.197)
t-5 0.004 (0.164) -0.007 (-0.189) 0.002 (0.177) -0.007 (-0.774)
t-6 0.008 (0.332) 0.000 (0.003) -0.007 (-0.610) -0.002 (-0.188)
t-7 0.000 (0.018) 0.010 (0.266) -0.007 (-0.676) -0.002 (-0.195)
t-8 0.011 (0.429) 0.002 (0.055) -0.005 (-0.453) -0.006 (-0.671)
t-9 0.000 (0.000) -0.017 (-0.456) -0.007 (-0.641) 0.004 (0.457)
t-10 -0.003 (-0.129) -0.008 (-0.208) -0.012 (-1.070) -0.008 (-0.891)
t-11 0.014 (0.965) 0.043 (1.641) -0.037 (-4.311) -0.010 (-1.295)

The table reports the dependence of the short rate on economic factors. Panel A shows the
results of regressing the 1-month yield on economic factors. Panel B shows the results of
regressing the 1-month yield on 12 lags of economic factors. Standard errors are shown in
parentheses.
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Table 4: Mapping between structural and reduced-form parameters

VAR No. of Σe Σmm Θmm ξ1m,1l α1 Θll η0 η1 α0 ξ0
parameters elements 5 10 16 16+9 7 6 1 7 1 7

Ω∗2 5 ×
Ω∗m 10 ×
φ∗mm 16 ×
ψ∗1m 12 × × × ×
φ∗21 15 × × × ×
Ω∗1 6 × × × ×
φ∗11 9 × × × ×
φ∗2m 20 × × × × ×
φ∗1m 12 × × × × ×
C∗2 5 × × × × × × × × ×
C∗1 3 × × × × × × × × ×

Table 5: Regressing Treasury yields on economic factors

Maturity 2 year t-Statistic 5 year t-Statistic 10 year t-Statistic

Intercept 4.101 (40.733) 4.735 ( 50.020 ) 5.458 (65.536)
Inflation 0.599 (11.085) 0.571 ( 11.241 ) 0.511 (11.434)
Real activity 0.636 (8.806 ) 0.403 ( 5.926 ) 0.183 (3.066 )
Adjusted R2 0.480 0.418 0.366

Intercept 4.101 (41.501) 4.735 (50.238) 5.458 ( 65.509)
Inflation 0.532 (9.254 ) 0.531 (9.692 ) 0.490 ( 10.117)
Real activity 0.655 (8.764 ) 0.408 (5.730 ) 0.188 ( 2.991 )
Liquidity -0.273 (-3.521) -0.156 (-2.114) -0.085 ( -1.297)
Volatility -0.068 (-0.807) -0.055 (-0.680) -0.023 ( -0.323)
Adjusted R2 0.499 0.423 0.366

The table reports the parameter estimates from OLS regressions of Treasury yields on eco-
nomic factors. The sample period is 1988:12 to 2013:05.
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Table 6: Regressing A credit spreads on economic factors

Maturity 2 year t-Statistic 5 year t-Statistic 10 year t-Statistic

Intercept 1.220 (23.438 ) 1.129 (27.203 ) 1.074 ( 28.453 )
Inflation 0.029 (1.044 ) 0.077 (3.434 ) 0.029 ( 1.417 )
Real activity -0.569 (-15.237) -0.358 (-12.003) -0.298 ( -11.016)
Adjusted R2 0.450 0.327 0.294

Intercept 1.220 (42.634 ) 1.129 (48.559 ) 1.074 ( 48.310 )
Inflation -0.061 (-3.681 ) 0.011 (0.814 ) -0.024 ( -1.862 )
Real activity -0.463 (-21.392) -0.268 (-15.221) -0.214 ( -12.715 )
Liquidity -0.461 (-20.525) -0.349 (-19.117) -0.295 ( -16.918 )
Volatility 0.128 (5.250 ) 0.127 (6.427 ) 0.135 ( 7.145 )
Adjusted R2 0.834 0.789 0.755

The table reports the parameter estimates from OLS regressions of A credit spreads on eco-
nomic factors. The sample period is 1988:12 to 2013:05.

Table 7: Regressing BBB credit spreads on economic factors

Maturity 2 year t-Statistic 5 year t-Statistic 10 year t-Statistic

Intercept 1.871 (35.221 ) 1.750 (37.138 ) 1.642 ( 38.393 )
Inflation 0.002 (0.082 ) 0.034 (1.340 ) 0.010 ( 0.445 )
Real activity -0.765 (-20.057 ) -0.527 (-15.588 ) -0.409 ( -13.311)
Adjusted R2 0.595 0.460 0.388

Intercept 1.871 ( 52.842 ) 1.750 (53.870 ) 1.642 ( 57.735 )
Inflation -0.039 ( -1.878 ) -0.009 (-0.487 ) -0.022 ( -1.349 )
Real activity -0.634 ( -23.678 ) -0.420 (-17.084 ) -0.303 ( -14.077)
Liquidity -0.305 ( -10.958 ) -0.286 (-11.194 ) -0.244 ( -10.930)
Volatility 0.280 ( 9.267 ) 0.214 (7.715 ) 0.228 ( 9.384 )
Adjusted R2 0.820 0.743 0.729

The table reports the parameter estimates from OLS regressions of Treasury yields on the BBB
credit spreads. The sample period is 1988:12 to 2013:05.
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Table 8: Model estimates

Θ1l 0.9386 0 0 ΘQ
1l 0.6660 0 0

(76.934) (34.426)
0 0.9934 0 -0.2778 0.9934 -0.0255

(764.15) (-10.289) (764.15) (-6.8919)
0 0.0016 0.8262 -0.0298 0.0016 0.9793

(2.2857) (42.588) (-2.0694) (2.2857) (489.65)

ξ0l -0.2893 0 0
(-9.3322)

ξ1m 0.6408 0.3906 0.1242 -0.4270 ξ1l
0.1536 0.5547 0.1788 0.3376 0.2726 0 0
-0.0160 -0.0208 0.1864 0.1446 0.2778 0 0.0255
0.1826 0.1283 0.2158 -0.0809 0.0298 0 -0.1531

α0 0.0027
(27.000)

α1 0.0004 0.0006 -0.0002 4.94E-06 1.46E-04 1.71E-04 6.51E-05
(8.8300) (10.187) (-3.2733) (0.0744) (12.586) (21.242) (5.9724)

ηBBB0 0.0044
(42.718)

ηBBB1 -0.0007 -0.0002 -0.0008 0.0002 3.72E-04 1.84E-04 -1.75E-04
(-0.7928) (-0.2488) (-9.0293) (3.3113) (4.9799) (16.140) (-11.218)

ηA0 0.0036
(32.143)

ηA1 -0.0011 -0.0008 -0.0020 -0.0008 -6.73E-05 1.48E-04 -9.08E-05
(-1.4056) (-2.162) (-20.243) (-5.2980) (-2.6289) (11.128) (-11.792)

Σm 0.4305 0 0 0
0.0042 0.2272 0 0
0.0017 -0.0295 0.6905 0
-0.0453 0.0599 -0.2044 0.7256

The table reports the model estimates and standard errors (in parentheses). The parameters are
estimated with the minimum-chi-square methods. The sample period is 1988:12 to 2013:05.
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Table 9: Forecast comparisons

RMSE criteria MAD criteria
Two Factors Four Factors No-Arbitrage Two Factors Four Factors No-Arbitrage

A24 0.0390 0.0192 0.0246 0.0268 0.0126 0.0146
A60 0.0380 0.0357 0.0277 0.0321 0.0198 0.0216
A120 0.0357 0.0367 0.0312 0.0302 0.0191 0.0223

BBB24 0.0442 0.0263 0.0211 0.0276 0.0215 0.0117
BBB60 0.0492 0.0411 0.0410 0.0430 0.0307 0.0317
BBB120 0.0462 0.0458 0.0453 0.0358 0.0298 0.0303

The table reports the comparisons of the out-of-sample forecasts for credit spreads. The fore-
casts are performed over the last 36 months of our sample, and the root mean square error
(RMSE) and the mean absolute deviation (MAD) of the forecast versus the actual values are
calculated. Lower RMSE and MAD denotes better forecasts. The best forecasts are high-
lighted in bold. We first estimate models on the in-sample, and update the estimations at
each observation in the out-sample. Three models are considered: unrestricted VAR with two
macro factors, unrestricted VAR with two macro factors, and two financial market factors and
VAR with four factors and cross-equation restrictions.
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Figure 1: Macro factors: inflation and real activity. The figure illustrates the two macro factors repre-
senting inflation (blue) and real activity(red). The sample period is 1988:12 to 2013:05.
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Figure 2: Financial market factors: liquidity and volatility. The figure illustrates the two financial mar-
ket factors representing liquidity (blue) and volatility (red). The sample period is 1988:12 to 2013:05.
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Figure 3: Treasury yields. This figure illustrates (annualized) monthly zero coupon bond yields of
maturity 2 years (blue), 5 years (red), and 10 years (green). The sample period is 1988:12 to 2013:05.
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Figure 4: Credit spreads: A and BBB rating classes. Panel (a) illustrates the credit spreads at maturity
2 years, 5 years, and 10 years under A rating class. Panel (b) illustrates the credit spreads at maturity 2
years, 5 years, and 10 years under the BBB rating class.
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(a) Inflation factor

20 40 60 80 100 120

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Yield Maturity n

Bn Coefficients on Real Activity

Treasury
Corporate BBB
Corporate A
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Figure 5: Loadings on macro factors. The figure shows how Treasury yields and corporate yields
change respond to a one standard deviation change in macro factors. Panel (a) shows the loadings on
the inflation factor and Panel (b) shows the loadings on real activity factor. Yields maturity is expressed
in months.
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(a) Liquidity factor
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Figure 6: Loadings on financial market factors. The figure shows how Treasury yields and corporate
yields respond to a one standard deviation change in financial market factors. Panel (a) shows the
loadings on liquidity factor and panel (b) shows the loadings on the volatility factor. Yields maturity is
expressed in months.
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(a) A credit spreads
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(b) BBB credit spreads

Figure 7: Loadings of credit spreads on economic factors. The figure shows how credit spreads respond
to a one standard deviation change in economic factors. Panel (a) shows the loadings of the A credit
spreads, and panel (b) shows the loadings of the BBB credit spreads. Yields maturity is expressed in
months.
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(a) A credit spreads

20 40 60 80 100 120
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Yield Maturity n

Bn Coefficients

Latent 1
Latent 2
Latent 3

(b) BBB credit spreads

Figure 8: Loadings of credit spreads on latent factors. The figure shows how credit spreads respond to
a one standard deviation change in latent factors. Panel (a) shows the loadings of the A credit spreads
and panel (b) shows the loadings of the BBB credit spreads. Yields maturity is expressed in months.
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Figure 9: Impulse responses functions for Treasury yields. The figure shows impulse responses for 24-
months (top), 60-months (middle), 120-months (bottom) Treasury yields. Only the impulse responses
from the economic factors are shown. All impulse responses are from a one standard deviation shock.
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Figure 10: Impulse responses functions for A credit spreads. The figure shows impulse responses for
24-months (top), 60-months (middle), 120-months (bottom) A-rated bond yields. Only the impulse re-
sponses from the economic factors are shown. All impulse responses are from a one standard deviation
shock.
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Figure 11: Impulse responses functions for BBB credit spreads. The figure shows impulse responses
for 24-months (top), 60-months (middle), 120-months (bottom) BBB-rated bond yields. Only the
impulse responses from the economic factors are shown. All impulse responses are from a one standard
deviation shock.
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